Ultrathin specimen preparation by a low-energy Ar-ion milling method.

نویسنده

  • Masanori Mitome
چکیده

The low-energy Ar-ion milling method was used to prepare ultrathin specimens for transmission electron microscope observation. The samples were thinned initially by a usual focused ion beam technique or typical Ar-ion milling with a high energy of 2-10 keV and were thinned additionally by an Ar-ion beam with an energy less than 1 keV, typically 500-900 eV. This low-energy ion beam was scanned over the specimen, and secondary electrons induced by the ion beam could be detected to form secondary electron images with a resolution of a few micrometre. Because a desired area can be selected and thinned by the low-energy ion beam, redeposition or cross contamination from irradiation of a metal grid that supports the sample can be prevented. It was shown that the low-energy Ar-ion beam thins a surface amorphous damage layer preferentially and effectively rather than a crystal specimen. Images from ultrathin specimens of two different materials revealed a detailed structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved focused ion beam target preparation of (S)TEM specimen--a method for obtaining ultrathin lamellae.

Specimen quality is vital to (scanning) transmission electron microscopy (TEM) investigations. In particular, thin specimens are required to obtain excellent high-resolution TEM images. Conventional focused ion beam (FIB) preparation methods cannot be employed to reliably create high quality specimens much thinner than 20 nm. We have developed a method for in situ target preparation of ultrathi...

متن کامل

Improving High Resolution TEM Images using Low Energy Ion Milling

Ion beam milling has become a widespread specimen preparation technique for non-biological materials over the last two decades, particularly for cross-sectional and plan-view transmission electron microscope (TEM) specimens. The basic principle of ion milling involves bombarding a specimen with energetic ions or neutral atoms acclerated and formed into a tightly focused ion beam. Material is sp...

متن کامل

A technique for the preparation of cross-sectional TEM samples of ZnSe/GaAs heterostructures which eliminates process-induced defects.

Cross-sectional transmission electron microscopy (TEM) sample preparation of ZnSe/GaAs epitaxial films is investigated. Conventional argon ion milling is shown to produce a high density (approximately 5-8 x 10(11)/cm2) of small (diameter approximately 60-80 A) extended defects (stacking faults, microtwins, double positioning twins, etc.). In addition, transmission electron diffraction results i...

متن کامل

Ultra-Sharpening of Diamond Stylus by 500 eV O+/O2 + Ion Beam Machining without Facet and Ripple Formation

The price of single point diamond tools with a sharp tip is very high due to complex machining process and highly expensive machining equipments. Yet, the performance is not quite satisfactory. In this paper, we have presented a very simple and cost effective machining process for the sharpening and polishing of diamond stylus using low energy reactive ion beam machining (RIBM). In our method, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microscopy

دوره 62 2  شماره 

صفحات  -

تاریخ انتشار 2013